Skip to main content Aller au menu Aller à la recherche

Thesis defense of Jan-Philipp BUREIK

  • Soutenance de Thèse
  • Evénement scientifique
Correlations in Interacting Bose Gases

Thesis defense of Jan-Philipp BUREIK, PhD student in the Quantum gases group of the Laboratoire Charles Fabry, on 26 February 2024 at 2:00pm in the Auditorium of the Institut d'Optique Graduate School in Palaiseau, on the topic: "Number Statistics and Momentum Correlations in Interacting Bose Gases".

Abstract: "This thesis work is dedicated to the study of number statistics and momentum correlations in interacting lattice Bose gases. The Bose-Hubbard model is simulated by loading Bose-Einstein condensates (BECs) of metastable Helium-4 atoms into a three-dimensional (3D) optical lattice. This model exhibits a quantum phase transition from a superfluid to a Mott insulator that is driven by interaction-induced quantum fluctuations. The objective of this work is to comprehend the role of these quantum fluctuations by analyzing their signatures in momentum space. The original detection scheme employed towards this aim provides the single-particle resolved momentum distribution of the atoms in 3D. From such datasets made up of thousands of individual atoms, the number statistics of occupation of different sub-volumes of momentum space yield information about correlation or coherence properties of the interacting Bose gas. At close-by momenta these occupation probabilities permit the identification of underlying pure-state statistics in the case of textbook many-body states such as lattice superfluids and Mott insulators. In the weakly-interacting regime, well-established correlations between pairs of atoms at opposite momenta are observed. Furthermore, these pair correlations are found to decrease in favor of more intricate correlations between more than two particles as interactions are increased. A direct observation of non-Gaussian correlations encapsulates the complex statistical nature of strongly-interacting superfluids well before the Mott insulator phase transition. Finally, at the phase transition, fluctuations of the occupation number of the BEC mode are found to be enhanced, constituting a direct signature of the quantum fluctuations driving the transition. System-size independent quantities such as the Binder cumulant are shown to exhibit distinctive sharp features even in a finite-size system, and hold promise for constituting suitable observables for determining universal behavior when measured in a homogeneous system."

 

.

Site réalisé par Intuitiv Interactive