

M2 Quantum, Light, Matter, Nanosciences

Fundamentals of Nanophotonics - Tutorial 3
Spontaneous Emission engineering

Rabi oscillations of a molecule coupled to a plasmonic nanoantenna

Rabi oscillation of a molecule with a nanoantenna. In this exercise, we aim to derive a condition for observing the Rabi oscillation regime for a molecule coupled to a plasmonic cavity. A necessary condition is $2g > \kappa$. We estimate $\hbar g = dE$ using

$$E = \sqrt{\frac{\hbar\omega}{2\epsilon_0\epsilon_r V}}$$

and we introduce the oscillator strength f using $d^2 = f \frac{\hbar e^2}{2m\omega}$. Show that

$$\frac{2g}{\kappa} = Q \sqrt{f \frac{\lambda^3}{V}} \sqrt{\frac{r_e}{\pi\epsilon_r\lambda}}$$

, where $r_e = \frac{e^2}{4\pi\epsilon_0 m c^2}$ is the classical electron radius. Show that for $\lambda = 600$ nm, a Q-factor on the order of 10, a volume of 30nm^3 and a permittivity of 2, the strong coupling condition is satisfied.