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Fundamentals of Nanophotonics - Tutorial 1

Near field optics of a diffraction grating
A one-dimensional transmission grating with periodΛ imposes a spatial modulation on an incident op-
tical field. For an incident monochromatic plane wave of free-space wavelength λ at normal incidence,
the transmitted field at z = 0+ can be written as a Fourier series :

E(x, z = 0+) =

+∞∑
m=−∞

Tm ei(kx+mG)x, (1)

where

G =
2π

Λ
(grating vector), (2)

Tm =
1

Λ

∫ Λ

0
t(x)e−imGx dx (Fourier coefficients of the transmission function). (3)

Fourier expansion of a binary grating

Consider a binary amplitude grating with period Λ and a 50% duty cycle defined by

t(x) =


1, 0 < x <

Λ

2
,

0,
Λ

2
< x < Λ.

(4)

1. Compute the Fourier coefficients

Tm =
1

2
sinc

(mπ

2

)
=

1

2
·
sin

(mπ

2

)
mπ

2

(m ̸= 0), (5)

and T0 = 1/2.
2. Write the transmitted field immediately after the grating as a sum of plane waves using the

coefficients Tm.

Propagating vs Evanescent orders
3. Write a propagation condition for the order m when the grating is illuminated under normal

incidence. Define a cut-off order.
4. Provide a short physical explanation of why decreasing Λ causes more orders to become eva-

nescent.
5. For a grating embedded between two dielectrics with refractive indices n1 (incidence side) and

n2 (exit side), write the modified propagation condition for the exit side.
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We now consider illumination by a HeNe laser with wavelength λ = 633 nm. Study three gratings :
1. Λ = 10µm,
2. Λ = 1µm,
3. Λ = 300 nm.

For each grating :
1. Compute G and determine all integers m for which the diffracted order is propagating in free

space.
2. Sketch the angular distribution of propagating orders. Use the grating equation for transmission

angles.
3. Identify the regime : "many propagating orders (coarse grating)", "few propagating orders (in-

termediate)", or "subwavelength grating (only m=0 propagating)".

Near-field region

1. For Λ = 300 nm, compute the decay constant of the first evanescent orderm = ±1 :

αm =
√
(mG)2 − k20, (6)

so that the field decays as e−αmz . Express your result in nm−1 and estimate the 1/e decay length.
2. Discuss qualitatively strategies to collect evanescent waves with a detector in the far-field.

Optional challenge — Arbitrary transmission function

Let the grating transmission be a Gaussian aperture array :

t(x) = exp

[
−1

2

(x
σ

)2
] ∞∑
n=−∞

δ(x− nΛ). (7)

1. Derive the Fourier coefficients analytically (use the Poisson summation formula) and show how
the Gaussian envelope controls the amplitude of diffracted orders.

2. Discuss how changing σ affects the envelope and thus the number of strong diffracted orders.

Key conceptual questions

1. What determines whether a diffracted order is propagating or evanescent?
2. How does the grating period affect the angular distribution of the transmitted field?
3. Why are evanescent waves important in near-field optics and nanophotonics?
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