Theory of electromagnetic fields at the
nanoscale : scattering, Green tensor and
local density of states

All kudos to Introduction to Nanophotonics (Benisty, Lalanne, Greffet), Chapter 12.

3.1 The Green tensor and integral formulation of
electromagnetism

The most usual formulation of the scattering of electromagnetic fields is based on partial
differential equations. The propagation equation in a linear, isotropic, inhomogeneous
medium characterized by the relative permittivity ¢,(r) can be cast in the form

VXV XE({r) - Er(r)kgE(r) = [ W U0jinc(1), (3.1

where jinc stands for the current density in the sources generating an incident field. Here
¢, can be a function of both the position r and the frequency for inhomogeneous and
dispersive media. Note also that its imaginary part accounts for losses. The double curl
operator can be reexpressed using :

—_ —
VXVx - V(V)-A (grad(div) — A)

When considering transervse solutions only (fields checking div E = 0), the propagation
equation can be simplified into the Helmholtz equation (with source term) :

AE(r) + er(r)kSE(r) = —iwUojinc(1), (3.2)

Once boundary conditions are specified, the problem is well posed, and the goal is to solve
the equation to compute E(r) in all space. This type of formulation is very practical for
simple shapes such as planes or spheres.

For example, diffraction problems defines boundary conditions on the plane (of the
diffracting object). This lead us to the plane wave expansion, defining the amplitude of each
plane wave contained in the spectrum. A similar procedure can be used for spheres using
spherical functions. The solution is known as Mie theory.

This procedure of calculation of E from a propagation equation becomes intractable for
complex geometries, as general solutions are difficult to find.

Instead, it is possible to reformulate the problem in terms of an integral equation which has
a transparent physical meaning.
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The equivalence principle

In order to move to an integral formulation of electromagnetism, the basic idea is to consider
that field propagation always occur in vacuum and that the physical impact of the presence
of a material medium can be accounted for by introducing additional source terms. This
picture is actually somewhat consistent with the microscopic picture of light propagation :
a material medium is a collection of point-like sources placed in a rather empty space.

Let us proceed, by adding the term kg[er(r) — 1]E on both sides of Eq. (3.2). This yields
VXV XE - kZE = k3[&, — 1]E + i@ lojinc = i@ojind + i@ Hojinc, (3.3)
where the induced current density is defined as

jina(£) = —iweole, (1) — 1E(). (3.4)

We now have a propagation equation in vacuum with two source terms. The known source
term jinc generates the incident field Einc(r), and the (as yet unknown) induced source term
jind generates the scattered field Egc.¢(r). The total electric field E(r) is the sum, therefore the
interference, of the incident field and the scattered field.

We still want to compute E(r), but now, we have transformed a reflection or scattering
problem into a radiation problem. This is known as the equivalence principle. This is
still not an integral formulation of the problem, we are still dealing with a propagation
equation.

The situation described by the equivalence principle remains quite complex : the scattered
field is responsible for inducing source currents in space, that radiate to generate...the
scattered field.

Let us rephrase this idea. Equation (3.2) considers that the field generated by the current
density jinc is scattered by the medium described by ¢,(r), whereas Eq. (3.3) describes
radiation in vacuum by two current density distributions, jinc and jing. Yet, we still need to
determine the induced sources jing. As opposed to "simple" radiation problem, where the
currents are assumed to be known, here the currents must be determined self-consistently
from the incident field.

The Green tensor

We rephrased the problem of propagation and scattering in a material environment in
terms of radiation in vacuum by current elements. We want to compute the the electric field
E(r). A perfect tool to achieve this task would be to get a linear operatir relating the vector
current density jinc and jing to the vector electric fields they radiate in vacuum Ejn(r) and
Escat(1).

In general, these two vectors are not collinear. Indeed, it can be seen in the propagation
equation that the operator V X VX couples the different components of the electric field
to each component of the current density. A simpler way to express this fact is to note
that the electric field radiated in the far field is perpendicular to the propagation direction
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and therefore not always parallel to the current density : in the far field, the electric field
radiated by a source is proportional to the transverse component of the current density.

The required operator is thus a tensor (also called a dyadic) connecting vector sources to
—

the vector electric field. Hence, we define the Green tensor G ¢ by

Definition of the Green’s tensor

E(r) = iwuo / E)O(r,r')j(r') d’r. (3.5)

This relation expresses that (E)o(r,r/)j(r/) d®¢ is the electric field produced at position r
by the current source j(r’) d*t’ positioned at r’. The total electric field is the sum of fields
radiated by all source elements. We inject this expression of the electric field into the
propagation equation :
VXV Xiwpg / (E)g(r,r/)j(r’) & - kliwpo / (E)O(r,r’)j(r’) d’r
=iwp / Tj(r')é(r -r)dr

/ [V XV X <E>o(r,r') - kg?o(r,r')] j)dr = / [T(S(r - r’)] j(r)d’r
This leads to a general definition of the Green’s tensor, as a solution of an operator equation

Definition of Green’s tensor (continued)

V xV x <E)o(r,r') - kg?o(r,r') =T 6(r—1), (3.6)

e d
where 1 is the unit dyadic. This indicates that the source can be a dipole with
three independent orientations. This equation can be solved with radiation boundary
conditions.

Derivation of the Green tensor expression

In this section, we derive the integral equation obeyed by the electric field and we identify
the explicit expression of the vacuum Green'’s tensor, as introduced in the previous section.
To proceed, we start from the general expression of the field in terms of the electromagnetic
potentials. The vector potential generated by a distribution of sources is given by the
retarded potential expression

.y eikoR ,
A@) = i‘—i / i) &, 3.7)
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where R = [r — r’|. This solution assumes that the field decays at infinity. The currents can
be either produced by an external source, or induced in the material medium. We do not
need to make an explicit distinction so far for the derivation of Green’s tensor.

Using the general relation between the electric field and the potentials, we obtain

JA(r)
ot

E(r) = — - VV(r). (3.8)

The scalar potential can be derived from the vector potential using the Lorenz gauge
condition,

V-Alr) - iC—C;)V(r) =0. (3.9)

Inserting this expression for the scalar potential into Eq. (3.8) yields

Er) =iw [A(r) + %V(V “A(r)] .

0

(3.10)

Using the explicit expression of the vector potential, we finally obtain

E(r)—zwg/[
- ikoR
:iwyo/[( I + k2V(V))

From its definition, we identify the expression of Green’s tensor, for r # r’, as

j(x')d>r

+ 1cu [ (V- ](r’))d3 !

j(x)d’r

elkUR

TR’ =r—r|. (3.11)

?o(r,r’) = ( e VV)
0

This formula gives the electric field both inside and outside the sources. Its physical
meaning is transparent : the field is the sum of the incident field produced by all currents
element induced in the source volume V. It contains terms that vary as 1/R, 1/R?, and
1/R3, consistent with the electric field generated by an electric dipole. The Green tensor
diverges when r = t, when R — 0, when evaluating the field at a point belonging to the
sources. This point is addressed in the next section.

Singularity of the Green tensor and integral equation

The field generated at a position r is related to the integral of the Green’s tensor over
the source distribution. What is relevant is the investigation of singularities of E(r) =

iwpo [ <E>0(r,r’)j(r’) d3r’. when r is located within the source volume.

The first term in the calculation of the field is given by
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ikoR
iwpo / (T)(r,r’)ZnR j()d3

thanks to the r2dr’ dependence of the volume element d3r’, this contribution never
diverges.

The second term to consider is :

eikoR .,
/[V(V- R j(@')d’r

Taking the derivative V(V-) of the vector integral in Eq. (??) does not introduce any difficulty
provided that the field is evaluated at a point r that does not belong to the current distribution.
In that case, r # r’ and the integrand is non-singular. By contrast, if the point r belongs to
the sources, the integral exhibits a singularity.

It arises from the second spatial derivative, which produces a term varying as 1/7’®. When
combined with the r2dr’ dependence of the volume element d3r’, this leads to a 1/R term
and thus to a logarithmic divergence.

To avoid this difficulty, one introduces an exclusion volume 6V around the observation
point r. In what follows, we choose a spherical exclusion volume and let its radius tend to
zero.

The field produced by the "grad-div" term of Green’s tensor can then be written as the sum
of two contributions,

vao 4nk2/[ V-

lk R / ikoR
— i) dr ] [— lim V( V)/ i) e—d%'] (312)
V-6V

—iw 4mR
ikgR
L jim vy / i) e (3.13)
£y 0V —0 sv —lw 4mR

(3.14)

where we can identify a polarization density vector defined as j(r’') = (—iw)P(r).

For the first term, the singularity has been removed, because the exclusion volume has been
introduced and the order of differentiation and integration can be exchanged.

The second term requires special treatment, but can be obtained from a physical argument.
When the exclusion volume is sufficiently small, we can consider that the volume of the
sphere is uniformly polarized, and that all points in the volume of the sphere are in the
near field region of any other point of the sphere : retardation effects are negligible and the
electrostatic approximation applies.

In other words, the field generated by this spherical exclusion volume at its center is given
by the answer to a textbook problem of electrostatics : the field produced inside a uniformly
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polarized sphere is equal to —P/(3¢p). We thus obtain

ikoR
GHo / [V(V- eR j(r’)d3r/]

m 5
5V —0 4nk

, P
(slx}mo V(v )/ jr ) 360
. eikoR ey 3. ](I") A3
=iwlg [61‘}120/‘/ . PV(V R ja@)ay| - [38 / —p O(r —r')d’r
' ikoR , ‘ T ;
=iwl 61‘}210/‘/ . k2V(V R @AY | —iwpo / 3kzé(r—r )jx)d’r

This result, combined with the previous calculated term, shows that the Green’s tensor is
an operator that can be expressed as :

Green’s tensor in vacuum

—> — 1 - eikR | T 5
Goxr)=PV|| I +—= — - — -r), 3.15
O(rr) ké AR Sk(zJ (r r) ( )

PV denotes evaluation in the sense of the Cauchy principal value, which is, by definition,
the value of an integral when introducing an exclusion volume around a singularity
and letting it shrink to zero.

Here, calculation of the field is performed, when relevant, after exclusion rom the integration
volume of the singularity at r = t’ , which is accounted for by the last term of the operator,
which is specifically non-zero. By contrast, when r # r’, there is no divergence, and the last
term of the operator is equal to zero, therefore introducing no unrelevant correction.

Integral relation and integral equation

The dyadic Green tensor coincides with the electric field radiated by a dipole, except that
the singularity at the origin has been explicitly identified and assigned a clear physical
meaning. The integral equation shows that the field at any point is the sum of the incident
field and the field radiated by all induced dipoles within the scattering object.

The electric field at any point r can now be expressed in integral form as a superposition of
the fields radiated by all current elements. Now, we explicitly make a difference between
source currents related to the incident field and induced currents :

E(r) = iwopio / G o) [jine() + jina)] &’ (3.16)



3.1 The Green tensor and integral formulation of electromagnetism | 41

The physical content of this equation is transparent : the field at any point is the superposition
of the fields radiated by all current elements in the system. Substituting the expression of
the induced current density and identifying the incident and scattered fields yields

E(t) = Ennc(r) + iopio / C o) jmat’) '

= Einc(r) + k(2) / ?g(r,r/) [e,(r') — 1] E(r')d®. (3.17)

= Einc(r) + Escat(r) (318)

The integral equation shows that the field at any point is the sum of the incident field
and the field radiated by all induced dipoles within the scattering object. Each volume
element d®t’ carries a dipole moment 6p = &o[&,(r') — 1]E(r')d®r’ and radiates a field
k%?o(r,r’)[e,.(r’) — 1]E(r’)d3r’. The resulting problem is therefore intrinsically a multiple-
scattering problem. It should be emphasized once again that the Green tensor used here
is the Green tensor in vacuum. A dipole embedded in a metal emits a wave that cannot
propagate freely :the field is mostly evanescent. However, one can show that the attenuation
of the field due to evanescence emerges naturally from the coherent superposition (in other
words, interference) of all scattered fields produced by the induced currents in the medium,
and that are propagating in vacuum.

Lippmann-Schwinger equation for the electric field

Besides, Equation (3.18) shows that the field can be computed everywhere outside the
scattering object, provided the field is known inside it. The key issue is therefore to determine
the internal field. Restricting the integral relation to the volume V where ¢,(r") # 1 leads to
the integral equation

E(r) = Eince(r) + k%/ (E)o(r,r') [e,(r') — 1] E(r') d®Y, reV. (3.19)
1%

The unknown is the electric field, which appears both inside and outside the integral.
This equation is known in physics as the Lippmann—Schwinger equation : it describes
scattering problems. Here, we deal with scattering of light waves, while the Lippmann-
Schwinger equation is usually seen in the context of quantum physics, where we treat
scattering of wavefunctions. The structure of the physics underlying the equation is
however strictly equivalent. This integral formulation provides a complete description
of the scattering problem and is strictly equivalent to the differential formulation with
boundary conditions.

The integral formalism has many useful properties. It provides physical insight into
scattering processes, allows a clear distinction between single and multiple scattering, and
facilitates the derivation of approximate solutions for small scatterers or weak dielectric
contrast. It also provides a natural framework for introducing the scattering matrix and
analyzing the far-field behavior of the scattered field.
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Multiple scattering

The integral equation provides a rigorous framework for defining single and multiple
scattering. From a mathematical point of view, it can be solved by iteration. Introducing the
simplified notation

[¢e —1]E — VE, k3 / ?o(r,r’)X(r’) d’r - GyX, (3.20)

the integral equation becomes

E = Einc + GoVE
= Einc + GoVEinc + GoVGoVE
=[1+GoV + GoVGyV + GoVGoV GV + -+ - | Eine. (3.21)

This series, known as the Liouville expansion, has a clear physical interpretation. The term
proportional to GoV' corresponds to single scattering, while the term (GoV')" describes n
successive scattering events. Multiple scattering introduces a nonlinear dependence of the
scattered field on V, which lies at the heart of super-resolution reconstruction techniques.

The Green’s tensor in an arbitrary environment. Dyson equation

An alternative formulation consists in introducing a Green tensor that explicitly accounts
>
for the environment. Instead of defining G ¢ as the field produced in vacuum by a dipole,

>
we define a Green tensor G that describes propagation in the medium characterized by
&(r). It obeys

VXV x <E>(r,r’) - er(r)kéﬁ(r,r’) =T 6(x—1). (3.22)

And now the permittivity describing the arbitrary environment is present in the equation of
the Green’s tensor. The electric field generated by an arbitrary current distribution is then

E(r) = iwpo / E)(r,r')jmc(r’) d’r. (3.23)

For a monochromatic electric dipole moment p located at ry, corresponding to a current
density —iwpd(r — 19), the field reads

E(r) = po a)2(a>(r,r0)p. (3.24)

Deriving G analytically is generally difficult, but it can be achieved for simple geometries.
The Green tensor for a planar interface is derived in Complement 12.B using a plane-wave
expansion and Fresnel coefficients.
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Finally, inserting Eq. (3.23) into Eq. (3.18), and noting that the relation holds for any current
distribution, one obtains an integral equation for the Green tensor itself,

«—> > «—> >
G=Go+GoVG +... (3.25)

This equation is known as the Dyson equation.

3.2 Local Density of states

In the first section of this chapter, we introduced the Green’s tensor as a quantity, purely
classical in nature, that establishes a connection between sources and the field they produce
in their environment; it is also simply the field produced by a point dipole in the same given
environment. This field can be expanded over the basis of the available electromagnetic
modes of the system. In that regard, the Green’s tensor describes the way a point source is
globally branched on the available modes of the system, and how it decays by emitting a
field in these various modes.

In this new section, we start with a different point of view to discuss the same domain
of ideas : how does a source radiate in its environment? In the context of Fermi Golden
Rule, the answer to this question introduces the concept of the density of modes as a factor
that impacts the spontaneous decay rate. Our goal is to demonstrate a relation between
the Green’s tensor and the Local Density of States, establishing a bridge between classical
electrodynamics and the well-known problem of the couplinf of a two-level system to
surrounding vacuum in quantum physics.

States and modes in wave physics

Before starting the discussion, we make a remark on semantics regarding the meaning of
state, mode, and eigenfunction. The word “state” is usually used in the context of quantum
mechanics or statistical physics, whereas the word “mode” is often used in wave theory. A
state is an eigenfunction of a Hermitian operator for a given set of boundary conditions.
Similarly, a mode of an acoustical or electromagnetic resonator is an eigenfunction of the
homogeneous wave equation for a given geometry.

For electrons in a semiconductor in the term density of states (DOS) is used for a function
g (E) such that g(E) dE is the number of electronic states (modes) with energy in the interval
[E,E + dE]. Here, we aim to find the number of electromagnetic modes such that p(w) dw
is the number of electromagnetic states in the interval [w,w + dw].

To begin with, we briefly recall how to derive the density of electromagnetic states, or
equivalently how to count the number of different solutions (plane waves) of Maxwell’s
equations in vacuum. A difficulty immediately arises, since this number is infinite. However,
it is possible to define the number of modes per unit volume.

To proceed, it is convenient to introduce a perfectly conducting virtual cubic box of side
length L and examine the limit as L tends to infinity. Prefectly conducting walls impose
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finite boundary conditions. The modes are stationary waves with discrete wavevectors of
the form

—_—, 3.26
; (3.26)
where 1, m, and [ are positive integers. In k-space, the volume occupied by one state is
therefore (11/L)3. As a consequence, the number of states in the volume element dk dk, dk;

1S
213

where the factor 2 accounts for the two possible polarizations of each electromagnetic
state.

The number of modes increases as L?, i.e. proportionally to the volume of the box. We now
let the size of the box increase and divide by the volume V in order to obtain the number of
modes per unit volume. In this limit, the influence of the boundaries becomes negligible,
and we obtain a density of states per unit volume which is an intrinsic property of vacuum.
The DOS in k-space per unit volume is therefore equal to 2/7>.

Using the dispersion relation w = ck, we can now derive the vacuum DOS p,(w). The
states with frequencies between @ and @ + dw occupy a volume 1tk?dk /2 in k-space, since
only positive values of ky, ky, and k; are considered. Using k = w/c, we find

Density of modes in vacuum

nk2dk 2 w?
— 5= S5 do. (3.28)

po(w)dw =

So far, we have discussed stationary waves in a perfectly conducting box. An alternative
approach consists in imposing periodic boundary conditions (the Born—von Karman
conditions). In this case, the modes are propagating waves. The periodicity condition, for
instance exp[iky(x + L)] = exp(ikyx), implies

2nn 2nm 2nl
ky=——, = =— (3.29)
L
where 11, m, and I are positive or negative integers. The DOS in k-space is then 1/(47), but
since both positive and negative components of the wavevector must be counted, the same

result for the DOS is recovered.

Using the DOS, we can now compute the number of states N (w) available between 0 and w

inavolume V : " s
N(w) = V/ po(@)dew’ = v - Sr Vv
0

= — —. 3.30
37m2c3 3 A3 ( )

This result provides a useful rule of thumb : the number of electromagnetic states with
frequencies smaller than w is approximately equal to the volume divided by (1/2)3.

We now illustrate the importance of this concept using two examples : blackbody radiation
and the spontaneous emission rate. Each electromagnetic mode carries a quantum of energy
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hw, and its mean occupation number is given by the Bose—Einstein distribution

1
= . 3.31
ree() exp(iw/kpT) -1 (3:31)
Multiplying these two quantities by the DOS yields the blackbody energy density :
w? hw
T)= . .32
w@ D) n2c3 exp(hw/kpT) — 1 (3.32)

The DOS therefore plays a central role in the thermodynamic properties of radiation, and
in particular in energy and momentum transfer mediated by electromagnetic fields.

The DOS also plays a crucial role in the lifetime of an excited state of a two-level system.
According to Fermi’s golden rule, the decay rate is proportional to the number of available
final states. When considering radiative relaxation, the spontaneous decay rate is therefore
proportional to the number of electromagnetic states at the transition frequency. This can
be seen by comparing the Einstein coefficients for stimulated and spontaneous emission.
Their ratio is given by
A21 _ CL)2

B21ha) B m2¢3 ’
which is precisely the vacuum DOS. In stimulated emission, only the mode of the incident
photon is involved, whereas in spontaneous emission all electromagnetic modes contribute.
Hence, the spontaneous emission coefficient is proportional to the DOS.

(3.33)

In summary, the concept of DOS is essential for understanding both the thermodynamic
properties of electromagnetic radiation and the radiative decay of quantum emitters. In the
following, we analyze why it is necessary to introduce a local density of states and how it
can be related to the Green tensor.

Introduction to the concept of local density of states

The purpose of this section is to motivate the introduction of a local density of states (LDOS)
and to provide its general form. We begin with the case of electrons.

The number of states in the frequency interval [w,w + dw] is given by
dN(w) = g(w) dw. (3.34)
If the spectrum is discrete, the DOS can be written as

g(w) =D 8(w — wy), (3.35)

where the index 7 labels the states and allows for degeneracy.

To introduce spatial dependence, we define the LDOS g(r,w).
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This is motivated by the fact that not all spatial points are equivalent unless the system
is translationally invariant. For example, at a metal-vacuum interface, the electronic
wavefunction decays into the vacuum and exhibits oscillations near the interface.

The probability of finding an electron in state W,, within the volume element dr is |W,, (r)|dr.
This naturally leads to the definition of the electronic LDOS :

grw) = > Wu(m)Po(w — w). (3.36)

Integrating the LDOS over space yields the total DOS. We now extend this concept to
electromagnetic fields.

The need for an electromagnetic LDOS can be illustrated by two examples. First, the
spontaneous emission rate of an atom depends on its position relative to the nodes and
antinodes of the electromagnetic modes. Second, the blackbody energy density vanishes at
a perfectly conducting surface, where the field is zero. Thus, while the DOS is uniform in
vacuum, it becomes position dependent in structured environments.

To formalize this idea, we recall that the energy is proportional to the square of the field
amplitude. For simplicity, we first consider a scalar field. Guided by Eq. (3.45), we define

p(rw) = Z W, (1)P5(w — wy), (3.37)
n
where W, (r) satisfies the normalization condition

/ W, (r)?dV = 1. (3.38)
\%4

It follows immediately that
/ p(r,w)dV = p(w). (3.39)
v

Connecting the LDOS to the Green’s tensor by a mode expansion

THe LDOS is a quantity that allows to count for available modes in a given environment.
The Green'’s tensor can be understood as the field produced by a single point source in a
given environement. This field depends on the position of the dipole, because its coupling
to the environement depends on its position. The generated field can be expanded over a
basis of the modes of the system. In order to connect the Green’s tensor to the LDOS, it is
interesting to look for a way to expand the Green’s tensor over a mode basis.

The general problem requires to deal with tensor quantities. For the sake of simplicity,
we will illustrate the derivation using scalar quantities; the generalization of the result is
tedious but straightforward.

In this scalar approach, we start by defining the Green function as the solution of the
Helmholtz equation

2
V2G(rr,w) + %G(r,r’,a)) =-0(r—71). (3.40)
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with the appropriate boundary conditions of the problem. We now consider the complete
orthogonal set of modes {W,,} of the problem. Here, they simply correspond to the modes
of the Laplacian operator

2
2 Wy
VW, = -——W,, (12.60)
c
with eigenvalues —w?2 /c%. We expand the Green function on this basis :

Gy ,w) = Z cn (', )W, (). (12.61)

Inserting this expansion in the equation that defines G, we obtain :

2 a)Z
el w) (% - C—z) W, (r) = —5(r— ).

(3.41)

Since the {W¥, } form an orthonormal basis, we have

/ W, ()W, (1) d°r = 6y . (3.42)

By multiplying the equation by W}, (r) and integrating, we obtain :

Wi (1)

e, w) = — .
m 7 a)z (U2

(12.64)

Finally, the Green function can be cast in the form

Gy, w)==-> CZ\yH(r—)\yZ(r')

. (3.43)
n W — Wy

and more interestingly, we inspect the caser =1’ :
Expansion of the fields radiated by a source over the modes

(3.44)

and we can already feel the connection with the LDOS
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grw) = D W, (®Po(w — wy). (3.45)

Now the question is mostly the derivation of the connection to the Dirac distribution of
modes.

A specific mathematical identity is involved at this point. We use the following identity,
which can be demonstrated by contour integration in the complex plane (to be done in
appendices...)

lim Im
n—0

m] = % [(3(&) - a)n) - 6((&) + a)n)] . (3.46)

This is a pure mathematical identity so far. We note that we deal exclusively woth positive
frequencies, so that the term 6(w + w,) can be dispelled. Only the first Dirac 6(w — wy)
remains.

AW, @P > OPT s o 347

ImIm [G(rr,w + i = lim Im —_—
17—0 [ ( 77)] 1—0 ; (w+in?-w? % 2wy

Ata given frequency w, only terms with w, = w are non-zero. We can replace all occurrences
of the different eigenfrequencies w, with w. Finally, we get

Connecting the LDOS to Green'’s tensor - scalar case

p(r,w) = ; ¥, (0)P6(w — wy) = 71;13(1) % Im [G(r,r,a) + in)] . (3.48)

Vector case

Let us now consider briefly the vector case for non-lossy systems. The Green tensor satisfies
the propagation equation. Assuming that the field can be expanded over a set of orthogonal
modes E,, (r) satisfying

[ B B dr =5, 3.49
the Green tensor can be expanded as :

(E)(r,r’,w) = Z w

— (3.50)
m m

It follows that the field E(r) radiated by a current density j(r) is given by

E(r) = > CuEnl(r), (3.51)
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where the mode amplitude C,, is given by an overlap integral :

Cn = ’ﬂz; / E, (1) -j() d®r. (3.52)
&0 wy, — w?
We can derive
hrn Im [ G (rrw+ 117)] Z —Em(r)E (1)0(w — wm). (3.53)

It follows that

Connecting the LDOS to Green'’s tensor - Vector case

plrw) = 11)11}1% % Tr {Im [?(r,r,a) + in)]} . (3.54)

In most situations where we discuss spontaneous emission, we are dealing with dipoles with
a given orientation. Such a dipole os not coupled to all modes available at its position, but
only to the modes that share the same polarization. This means that only some components
of the Green’s tensor must be considered to account for the appropriate density of states.

Partial LDOS (projected LDOS along u

We introduce the partial LDOS as the LDOS projected along the dipole unit vector u :

Pu(t,w) = 11)11% % {Im [u . (E)(r,r,w +in) - u]} . (3.55)

We retrieve an expression similar to the scalar case. In vacuum (and more generally in all
homogenous, isotropic media), a the partial LDOS amounts to 1/3 of the "total" LDOS, as
we have to consider dipoles with all possible orientations in (uy,uy,uy).
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