Nonequilibrium Statistical Physics

Irreversible Thermodynamics

1 Onsager reciprocity relations

Onsager derived relations of reciprocity for the linear response coefficients. These relations can be used provided that the generalized forces are expressed in a specific way. In this exercise we will derive linear response coefficients that do satisfy relations of reciprocity. We consider a homogeneous conductor that allows transport of charge and heat between two thermodynamic reservoirs R_1 and R_2 . The reservoirs have temperature T_1 and $T_2 = T_1 + \Delta T$ and electric potential V_1 and $V_2 = V_1 + \Delta V$. We will also give an expression of the thermal conductance as a function of the linear response coefficients.

We generally use the following formulation for the flux of charge and internal energy:

$$I_q = l_{11}\Delta V + l_{12}\Delta T$$

 $I_U = l_{21}\Delta V + l_{22}\Delta T.$ (1)

Using this formulation, the reciprocity relation $l_{12}=l_{21}$ is not satisfied. This is because we chose arbitrarily the formulation for the forces: ΔT and ΔV . We must define the flux of extensive quantity and identify the generalized forces starting from the rate of entropy creation. This ensures an unambiguous definition of the forces.

- 1. We consider that the conductor and the two reservoirs form an isolated system. q is the charge of an electron, ΔN and ΔU are the variation of number of electrons and internal energy in the reservoir R_2 during Δt . Write the variation of charge and energy of reservoir R_1 neglecting the heat capacity and electrical capacity of the conductor.
- 2. Derive the variation of entropy in R_1 and R_2 corresponding to a variation of charge $q\Delta N$ and energy ΔU . The chemical potential is $\mu(T)$.
 - 3. Derive the total variation of entropy during Δt in the system.
 - 4. The rate of creation of entropy in the system is :

$$\frac{\Delta S}{\Delta t} = \sum_{i} J_i X_i,\tag{2}$$

where J_i is the rate of variation of the extensive variables :

$$J_U = \frac{\Delta U}{\Delta t} \ J_q = q \frac{\Delta N}{\Delta t}.$$

Deduce that the generalized forces associated X_i associated to the extensive quantities are :

$$X_{U} = -\frac{\Delta T}{T^{2}}$$

$$X_{q} = -\frac{1}{q} \Delta \left(\frac{\mu_{ec}}{T}\right), \qquad (3)$$

where $\mu_{ec} = \mu + qV$ is the electro-chemical potential.

5. Using this formulation, we can write coefficients that satisfy Onsager reciprocity:

$$J_q = L_{11}X_q + L_{12}X_U$$

$$J_U = L_{21}X_q + L_{22}X_U.$$
 (4)

The coefficient L_{22} cannot be immediately identified with thermal conductance. The thermal conductance Γ is defined by $J_U = -\Gamma \Delta T$ in absence of charge flux rather than for zero voltage. Derive a relation between L_{11} and L_{12} for zero charge flux. Show that the thermal conductance is given by :

$$\Gamma = \frac{L_{11}L_{22} - L_{12}^2}{L_{11}T^2}. (5)$$

2 Heat conduction: production of entropy in a constriction

We consider a thermal conductor (thermal conductivity λ) occupying a volume defined in spherical coordinates. It occupies the volume comprised between R_1 and R_2 . It has a cylindrical symmetry around the z axis and is comprised between $\theta = 0$ and $\theta = \alpha$. The temperatures are $T(R_1) = 300K$ and $T(R_2) = 320K$. This creates a radial heat flux in the conductor.

- 1. Derive the local volumic rate of creation of entropy as a function of T, $\frac{\partial T}{\partial r}$ and λ .
- 2. Show that the rate of creation of entropy vary as r^{-4} .
- 3. Where do irreversible phenomena occur in the system?