Skip to main content Aller au menu Aller à la recherche

Quantum Plasmonics

Quantum Plasmonics

Revisiting Quantum Optics with single surface plasmons

Surface plasmons are waves of electron density propagating at the interface between a metal and a dielectric. They confine the electric field in a tiny volume, and this property makes them particularly interesting candidate to convey optical signal through nanometric structures and devices that are much smaller than conventional optics. Moreover, theoretical models predict that the quantum behavior of plasmons is identical to the quantum behavior of photons. Thus, many physicists nowadays study the opportunity to use plasmons instead of photons for quantum information related applications.

Quantum plasmonics aims at reproducing experimentally the landmark experiments of quantum optics using single surface plasmons. One of the most famous of these experiments has been performed around 30 years ago by Hong, Ou and Mandel : they observed that two indistinguishable photons reaching a 50/50 beamsplitter using two distincts input ports would exit the same device by two separated output ports, a phenomenon since called photon coalescence. Our team performed a plasmonic version of the HOM experiment and we could observe both the coalescence but also an anti-coalescence effect in specific conditions. We also investigated a variety of other situations, such as the hybrid antanglement between a plasmon and a photon, the non-local control of a plasmon state, or the observation of plasmonic N00N fringes.

Benjamin Vest

Dr. Benjamin Vest

Associate Professor of Optics and Photonics

Phone / Office : +1 33 64 53 32 74 / R2.54

Dr. Marie-Christine Dheur

Alumnus - PhD 2016, now engineer at Saint-Gobain Recherche

PhD Dissertation :

"Expériences de plasmonique quantique : dualité onde corpuscule du plasmon de surface et intrication entre un photon et un plasmon de surface."


Plasmon anticoalescence

Anti-coalescence of bosons on a lossy beamsplitter

Les auteurs : Benjamin Vest, Marie-Christine Dheur, Eloïse Devaux, Alexandre Baron, Emmanuel Rousseau, Jean-Paul Hugonin, Jean-Jacques Greffet, Gaëtan Messin, François Marquier

DOI : 10.1126/science.aam9353

Science Vol. 356, Issue 6345, pp. 1373-1376 (2017)

N00N fringes


Plasmonic interferences of two-particle N00N states

Les auteurs : Benjamin Vest, Ilan Shlesinger, Marie-Christine Dheur, Eloïse Devaux, Jean-Jacques Greffet, Gaëtan Messin, François Marquier

DOI : 10.1088/1367-2630/aac24f

New J. Phys. 20 053050 (2018)


Remote Preparation


Remote preparation of single-plasmon states

Les auteurs : Marie-Christine Dheur, Benjamin Vest, Éloïse Devaux, Alexandre Baron, Jean-Paul Hugonin, Jean-Jacques Greffet, Gaétan Messin, and François Marquier

DOI : 10.1103/PhysRevB.96.045432

Phys. Rev. B 96, 045432 (2017)

Plasmonic beamsplitter


Single-plasmon interferences

Les auteurs : Marie-Christine Dheur, Éloïse Devaux, Thomas W Ebbesen, Alexandre Baron, Jean-Claude Rodier, Jean-Paul Hugonin, Philippe Lalanne, Jean-Jacques Greffet, Gaétan Messin, and François Marquier

DOI :  10.1126/sciadv.1501574

Science Advances  Vol. 2, no. 3, e1501574 (2016)

Site réalisé par Intuitiv Interactive